Foreground Extraction pada Citra Daun Melon dengan Bantuan Deep Neural Network

  • Muhammad Fajar Estu Nugroho Universitas Singaperbangsa Karawang
  • Nurlana Sanjaya Universitas Singaperbangsa Karawang
  • Ayu Shafira Tubagus Universitas Singaperbangsa Karawang
  • M Rayhan Rizqullah Syarif Universitas Singaperbangsa Karawang
  • Chaerur Rozikin Universitas Singaperbangsa Karawang

Abstract

Banyak sistem pemrosesan citra digital membutuhkan ekstraksi fitur di dalamnya. Salah satunya adalah ekstraksi foreground. Di dalam jurnal ini, kami mencoba melakukan ekstraksi foreground pada obyek daun melon dengan harapan hasil dari ekstraksi foreground dapat lebih lanjut dimanfaatkan terutama dalam proses pembuatan aplikasi yang berhubungan dengan daun melon, seperti misalnya pendeteksian dini terhadap penyakit daun melon. Dalam jurnal ini ekstraksi foreground dilakukan dengan bantuan algoritma GrabCut dengan bantuan deep neural network dan diaplikasikan sekaligus pada data obyek daun melon yang banyak. Hasilnya pada pengujian sebanyak 351 citra, ada 68% citra yang dapat diekstraksi citra daunya dengan sempurna.

Downloads

Download data is not yet available.

References

Aykut, M., & Akturk, S. M. (2018). An Improvement on GrabCut with CLAHE for the Segmentation of the Objects with Ambiguous Boundaries. Image Analysis and Recognition, 116–122. https://doi.org/10.1007/978-3-319-93000-8_14

Boykov, Y. Y., & Jolly, M.-P. (2001). Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images. Internation Conference on Computer Vision, July, 105–112.

Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851

Deng, L., & Yu, D. (2013). Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 7(3–4), 197–387. https://doi.org/10.1561/2000000039

Huang, Y., Li, W., Zhao, L., Shen, T., Sun, J., Chen, H., Kong, Q., Nawaz, M. A., & Bie, Z. (2017). Melon fruit sugar and amino acid contents are affected by fruit setting method under protected cultivation. Scientia Horticulturae, 214, 288–294. https://doi.org/10.1016/j.scienta.2016.11.055

Kaehler, A., & Gary, B. (2008). Learning OpenCV---Computer Vision with the OpenCV Library. In IEEE Robotics & Automation Magazine (Vol. 16, Issue 3). O’Reilly Media, Inc. https://doi.org/10.1109/mra.2009.933612

Li, Y., Zhang, J., Gao, P., Jiang, L., & Chen, M. (2018). Grab Cut Image Segmentation Based on Image Region. 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), 311–315. https://doi.org/10.1109/ICIVC.2018.8492818

OpenCV. (n.d.). Canny Edge Detection. https://docs.opencv.org/master/da/d22/tutorial_py_canny.html

Pineda, M., Pérez-Bueno, M. L., & Barón, M. (2018). Detection of bacterial infection in melon plants by classification methods based on imaging data. Frontiers in Plant Science, 9(February), 1–10. https://doi.org/10.3389/fpls.2018.00164

Riantama, G. N. S., Piarsa, I. N., & Sasmita, G. M. A. (2019). Pengaruh Segmentasi Terhadap Hasil Rotasi Citra Menggunakan Metode Minimum Area Rectangle. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 7(2), 95–102. https://doi.org/10.24843/JIM.2019.v07.i02.p01

Rother, C., Kolmogorov, V., & Blake, A. (2004). GrabCut - Interactive foreground extraction using iterated graph cuts. ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, 309–314. https://doi.org/10.1145/1186562.1015720

Suryawibawa, I. W. A., Putra, I. K. G. D., & Wirdiani, N. K. A. (2015). Herbs Recognition Based on Android using OpenCV. International Journal of Image Graphics and Signal Processing, 2(January), 1–7. https://doi.org/10.5815/ijigsp.2015.02.01

Umbaugh, S. E. (2010). Digital Image Processing and Analysis: Human and Computer Vision Applications with CVIPtools, Second Edition 2nd Edition. CRC Press.

V, R., K, N., & J, I. R. (2020). Foreground algorithms for detection and extraction of an object in multimedia. International Journal of Electrical and Computer Engineering, 10(2), 1849–1858. https://doi.org/10.11591/ijece.v10i2.pp1849-1858

Wirdiani, N. K. A., Sukma, S., Sudana, O., & Wibawa, S. (2018). Balinese Papyrus Manuscript Image Segmentation Using DBSCAN Clustering Method. Journal of Theoretical and Applied Information Technology, XCVI(17), 5995–6005.

Xie, S., & Tu, Z. (2015). Holistically-Nested Edge Detection University of California , San Diego. ICCV, 1395–1403. https://doi.org/10.1109/ICCV.2015.164

Xuan, L., & Hong, Z. (2018). An improved canny edge detection algorithm. Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS, 2017-Novem, 275–278. https://doi.org/10.1109/ICSESS.2017.8342913

Yi, F., & Moon, I. (2012). Image segmentation: A survey of graph-cut methods. 2012 International Conference on Systems and Informatics (ICSAI2012). https://doi.org/10.1109/ICSAI.2012.6223428
Published
2021-06-18
How to Cite
[1]
Muhammad Fajar Estu Nugroho, N. Sanjaya, A. S. Tubagus, M Rayhan Rizqullah Syarif, and C. Rozikin, “Foreground Extraction pada Citra Daun Melon dengan Bantuan Deep Neural Network”, JIP, vol. 7, no. 3, pp. 17-22, Jun. 2021.

Most read articles by the same author(s)