• Ratih Kartika Dewi Institut Teknologi Bandung
  • Rinaldi Munir Institut Teknologi Bandung


The topic of information security is always interesting to discuss. Steganography is a technique used to increase information security and has the aim of hiding the presence of messages to avoid suspicion from other parties. The insertion of a message into the carrier media does not change the quality of the carrier media and the media in which the message has been inserted cannot be distinguished by naked eye from the original media. Digital media that is widely used in steganography today is image. Therefore, this study provides a comparison of steganographic methods on digital images, so it is expected to provide an overview of the characteristics of a stego image that is embedded using various steganographic algorithms. At the end of this paper will also discuss the challenges and opportunities for further research.


Download data is not yet available.


Bas, P., Filler, T., & Pevný, T. (2011). “Break our steganographic system”: The ins and outs of organizing BOSS. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6958 LNCS.
Bashir, B., & Selwal, A. (2021). Towards Deep Learning-Based Image Steganalysis: Practices and Open Research Issues. SSRN Electronic Journal.
Filler, T., & Fridrich, J. (2010). Gibbs construction in steganography. IEEE Transactions on Information Forensics and Security, 5(4).
Fridrich, J. (2012). Steganography in digital media: Principles, algorithms, and applications. In Steganography in Digital Media (Vol. 9780521190190).
Guo, L., Ni, J., & Shi, Y. Q. (2014). Uniform embedding for efficient JPEG steganography. IEEE Transactions on Information Forensics and Security, 9(5).
Guo, L., Ni, J., Su, W., Tang, C., & Shi, Y. Q. (2015). Using Statistical Image Model for JPEG Steganography: Uniform Embedding Revisited. IEEE Transactions on Information Forensics and Security, 10(12).
Guttikonda, J. B., & Sridevi, R. (2019). A new steganalysis approach with an efficient feature selection and classification algorithms for identifying the stego images. Multimedia Tools and Applications, 78(15), 21113–21131.
Holub, V., & Fridrich, J. (2012). Designing steganographic distortion using directional filters. WIFS 2012 - Proceedings of the 2012 IEEE International Workshop on Information Forensics and Security.
Holub, V., Fridrich, J., & Denemark, T. (2014). Universal distortion function for steganography in an arbitrary domain. Eurasip Journal on Information Security, 2014.
Kodar, A. (2017). Implementation of Steganography in Image Media Using Algorithm LSB (Least Significant Bit). International Research Journal of Computer Science, 4(8).
Li, B., Wang, M., Huang, J., & Li, X. (2014). A new cost function for spatial image steganography. 2014 IEEE International Conference on Image Processing, ICIP 2014.
Munir, R. (2019). Kriptografi. In 2.
Pevny, T., & Fridrich, J. (2007). Merging Markov and DCT features for multi-class JPEG steganalysis. Security, Steganography, and Watermarking of Multimedia Contents IX, 6505.
Płachta, M., Krzemień, M., Szczypiorski, K., & Janicki, A. (2022). Detection of Image Steganography Using Deep Learning and Ensemble Classifiers. Electronics (Switzerland), 11(10).
Reinel, T. S., Brayan, A. A. H., Alejandro, B. O. M., Alejandro, M. R., Daniel, A. G., Alejandro, A. G. J., Buenaventura, B. J. A., Simon, O. A., Gustavo, I., & Raul, R. P. (2021). GBRAS-Net: A Convolutional Neural Network Architecture for Spatial Image Steganalysis. IEEE Access, 9.
Sedighi, V., Cogranne, R., & Fridrich, J. (2016). Content-adaptive steganography by minimizing statistical detectability. IEEE Transactions on Information Forensics and Security, 11(2).
Singh, S., & Attri, V. K. (2015). Dual Layer Security of data using LSB Image Steganography Method and AES Encryption Algorithm. International Journal of Signal Processing, Image Processing and Pattern Recognition, 8(5).
Veena, S. T., & Arivazhagan, S. (2018). Quantitative steganalysis of spatial LSB based stego images using reduced instances and features. Pattern Recognition Letters, 105.
How to Cite
R. K. Dewi and Rinaldi Munir, “PERBANDINGAN BERBAGAI METODE STEGANOGRAFI PADA CITRA DIGITAL”, JIP, vol. 9, no. 3, pp. 289-300, May 2023.