Klasifikasi Penentuan Jenis Obat Menggunakan Algoritma Decision Tree

  • Rika Nursyahfitri Singaperbangsa University, Karawang
  • Alfanda Novebrian Maharadja Singaperbangsa University, Karawang
  • Riva Arsyad Farissa Singaperbangsa University, Karawang
  • Yuyun Umaidah Singaperbangsa University, Karawang
Keywords: classification, type of drug, decision tree, C4.5, confusion matrix

Abstract

Classification is a technique that can be used for prediction, where the predicted value is a label. The classification of drug determination aims to predict the type of drug that is accurate for patients with the dataset that has been obtained. The data used in this study are data from the patient's medical records based on the symptoms of the disease but the type of medicine is not yet known. The data set used comes from kaggle.com which is then presented in the form of a decision tree with a mathematical model. To complete this research, a classification method is used in data mining, namely the decision tree. The decision tree method is used to find the relationship between a number of candidate variables, so that it becomes a classification target variable by dividing the data into 70% data testing and 30% training data. The results obtained from this study are in the form of rules and an accuracy rate of 96.36% as well as the recall and precision values ​​of each type of drug using a multiclass configuration matrix.

Downloads

Download data is not yet available.

References

Bramer, M. (2007): Principles of Data Mining. London, Spinger.
Chapman, Pete, dkk. (2000): CRISP-DM v.1.0 Step-by-step data mining guide, SPSS Inc.
Elisa, E. (2017): Analisa dan Penerapan Algoritma C4.5 Dalam Data Mining Untuk Mengidentifikasi Faktor-Faktor Penyebab Kecelakaan Kerja Kontruksi PT.Arupadhatu Adisesanti. Jurnal Online Informatika, 2(1), 36. https://doi.org/10.15575/join.v2i1.71
Ente, D. R., Thamrin, S. A., Arifin, S., Kuswanto, H., & Andreza, A. (2020): Klasifikasi Faktor-Faktor Penyebab Penyakit Diabetes Melitus Di Rumah Sakit Unhas Menggunakan Algoritma C4.5. Indonesian Journal of Statistics and Its Applications, 4(1), 80–88. https://doi.org /10.29244/ijsa.v4i1.330
Febriyanto, D., & Kurniawan, Y. I. (2018): Prediksi Penyakit Tuberculosis (Tbc) Menggunakan Algoritma C4.5. Jurnal Ilmiah SINUS, 16(2), 23–36. https://doi.org/10.30646/sinus.v16i2. 366
Noviandi. (2018): Implementasi Algoritma Decision Tree C4.5 Untuk Prediksi Penyakit Diabetes. Inohim, 6(1), 1–5.
Rafiska, R., Defit, S., & Nurcahyo, G. W. (2018): Analisis Rekam Medis untuk Menentukan Pola Kelompok Penyakit Menggunakan Algoritma C4.5. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 2(1), 391–396. https://doi.org/10.29207/resti.v2i1.275
Santosa, I., Rosiyah, H., & Rahmanita, E. (2018): Implementasi Algoritma Decision Tree C . 45 Untuk Diagnosa Penyakit Tubercolusis ( Tb ). Jurnal Ilmiah NERO, 3(3), 169–176.
Supriyanti, W., Kusrini, & Amborowati, A. (2016): Perbandingan Kinerja Algoritma c4.5 Dan Naive Bayes Untuk Ketepatan Pemilihan Konsentrasi Mahasiswa. Jurnal INFORMA Politeknik Indonusa, 1(3), 61–67.
Wahyudi, I., Bahri, S., & Handayani, P. (2019): Aplikasi Pembelajaran Pengenalan Budaya Indonesia. V(1), 135–138. https://doi.org/10.31294/jtk.v4i2
Published
2021-06-18
How to Cite
[1]
R. Nursyahfitri, A. N. Maharadja, R. A. Farissa, and Y. Umaidah, “Klasifikasi Penentuan Jenis Obat Menggunakan Algoritma Decision Tree ”, JIP, vol. 7, no. 3, pp. 53-60, Jun. 2021.