Klasterisasi Data Hasil Produksi Pertanian dan Peternakan Provinsi Nusa Tenggara Timur Menggunakan Metode K-Means
Klasterisasi, Produksi pertanian dan Peternakan
Abstract
The purpose of this study was to build a system for grouping and mapping districts / cities based on agricultural and livestock production in East Nusa Tenggara Province. The results of agricultural and livestock production in East Nusa Tenggara province have increased from year to year. However, currently there is no system to group districts / cities in East Nusa Tenggara province that have agricultural and livestock production. With the creation of this system, the agriculture and animal husbandry office can find out the level of production based on agricultural and livestock products. From this problem, a system was created in grouping and mapping the results of agricultural and livestock production in East Nusa Tenggara Province. The grouping method used in this study is the K-Means Clustering method.The data used in this study were agricultural and livestock production data totaling 396 data. Production data including rice production, corn production, cassava production, cattle production, pig production, and native chicken production are sourced from the website of the Central Bureau of Statistics of East Nusa Tenggara Province. Based on the results of system testing, it shows that the K-Means method applied to the clustering system of agricultural and livestock production can group the level of agricultural and livestock production in East Nusa Tenggara Province.
Downloads
References
Ginting, Benny, and Fristi Riandari. 2020. “Implementasi Metode K-Means Clustering Dalam Pengelompokan Bibit Tanaman Kopi Arabika.” Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) 3(2): 151–57.
Hediyati, Dyah, and I Made Suartana. 2021. “Penerapan Principal Component Analysis (PCA) Untuk Reduksi Dimensi Pada Proses Clustering Data Produksi Pertanian Di Kabupaten Bojonegoro.” Journal of Information Engineering and Educational Technology 5(2): 49–54.
Kaparang, D. R dan Eko, Sediyono. 2013. “Penentuan Alih Fungsi Lahan Marginal Menjadi Lahan Pangan Berbasis.” JdC 2(2): 18–25.
Manalu, Dodi Alexsander, Goldie Gunadi, and Teknik Informatika. 2022. “Infotech: Journal of Technology Information.” 8(1): 45–54.
Nishom, M. 2019. “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, Dan Manhattan Distance Pada Algoritma K-Means Clustering Berbasis Chi-Square.” Jurnal Informatika: Jurnal Pengembangan IT 4(1): 20–24.
Novany, Asril Andi, and M. Safii. 2021. “Penerapan Data Mining Dalam Mengelompokkan Produksi Daging Sapi Di Pulau Sumatera Menggunakan Algoritma K-Means Clustering.” Seminar Nasional Informatika (SENATIKA): 237–43.
Nugraha, Deka Dwinavinta Candra, Zumrotun Naimah, Makhfuzi Fahmi, and Novi Setiani. 2014. “Klasterisasi Judul Buku Dengan Menggunakan Metode K-Means.” Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Yogyakarta 21(1): 1907–5022.
Prasetya, Yongki Yudha, Ahmad Faisol, and Nurlaily Vendyansah. 2021. “SISTEM INFORMASI GEOGRAFIS HASIL PRODUKSI PADI DI KABUPATEN MALANG MENGGUNAKAN METODE K-MEANS CLUSTERING.” 5(2): 806–14.
Saragih, Siti Nurmila et al. “Implementasi Metode K-Means Pada Hasil Produksi Daging Jenis Ternak.” 6: 235–43.
Tacbir Hendro Pudjiantoro, Faiza Renaldi, dan Age Teogunadi. 2018. “PENERAPAN DATA MINING UNTUK MENGANALISA KEMUNGKINAN PENGUNDURAN DIRI CALON MAHASISWA BARU.”
Wijayanto, Sena, and Yoka Fathoni, M. 2021. “Pengelompokkan Produktivitas Tanaman Padi Di Jawa Tengah Menggunakan Metode Clustering K-Means.” Jurnal JUPITER 13(2): 212–19.
Wu, X., and V. Kumar. 2013. 44 Journal of Physics A: Mathematical and Theoretical The Top Ten Algorithms in Data Mining, Chapman & Hall/CRC.
Copyright (c) 2023 bruno, Patrisius Batarius, Yovinia Carmeneja Hoar Siki

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright for articles published in this journal is retained by the authors, with first publication rights granted to the journal. By virtue of their appearance in this open access journal, articles are free to use after initial publication under the International Creative Commons Attribution-NonCommercial 4.0 Creative Commons CC_BY_NC.