IMPLEMENTATION OF FACE RECOGNITION AND LIVENESS DETECTION SYSTEM USING TENSORFLOW.JS

  • Muhammad Basurah Mr.
  • Windra Swastika
  • Oesman Hendra Kelana
Keywords: liveness detection, face recognition, face-api.js, tensorflow, javascript, website, tensorflow.js

Abstract

Facial recognition is a popular biometric security system used to authenticate individuals based on their unique facial structure. However, this system is vulnerable to spoofing attacks where the attacker can bypass the system using fake representations of the user's face such as photos, statues or videos. Liveness detection is a method used to address this issue by verifying that the user is a real person and not a representation. This journal article focuses on the life sign method of liveness detection, which utilizes facial movements to confirm the user's existence. We implement the latest technology of artificial intelligence from TensorFlow.js using face-api.js and compare it with the GLCM algorithm. However, even with the life sign detection method, there is still a chance of bypassing the system if an attacker uses a video recording. To mitigate this, we propose the addition of an object detection system to detect the hardware used to show video recordings with ml5.js. Our face recognition and expression detection system, using the pre-trained model face-api.js, achieved an accuracy of 85% and 82.5%, respectively, and the object detection system built with ml5.js has high accuracy and is very effective for liveness detection. Our results indicate that face-api.js outperformed GLCM algorithm in detecting spoofing attempts.

Downloads

Download data is not yet available.

References

Abadi, M., Barham, P., Chen, J., & Chen, Z. (2016). TensorFlow: A system for large-scale machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016.
Abu, M. A., Indra, N. H., & Rahman, A. H. (2019). A study on image classification based on deep learning and tensorflow. International Journal of Engineering Research and Technology.
Anggraini, W. (2020). Deep Learning Untuk Deteksi Wajah Yang Berhijab Menggunakan Algoritma Convolutional Neural Network (CNN) Dengan Tensorflow. 16.
Ardiansiah, Widyadi Setiawan, & Linawati. (2016). Sistem Pengenalan Wajah Dengan Metode Face Features. E-Journal SPEKTRUM Vol 6, No 3, 22.
Bonetto, R., & Latzko, V. (2020). Machine Learning. Computing in Communication Networks: From Theory to Practice, 5.
Callier, P., & Sandel, O. (2021). Introduction to Artificial Intelligence. Actualites Pharmaceutiques, 1.
Chakraborty, S., & Das, D. (2014). An Overview Of Face Liveness Detection. International Journal on Information Theory (IJIT), Vol.3.
Dahria, M. (2008). Kecerdasan Buatan (Artificial Intelligence). Jurnal SAINTIKOM, 1.
Edelkamp , S., Lafuente , A. L., & Leue, S. (2001). Protocol Verification with Heuristic Search. AAAI Technical Report, 1.
Fikriya, Z. A., Irawan, M. I., & Soetrisno. (2017). Implementasi Extreme Learning Machine untuk Pengenalan Objek Citra Digital. Jurnal Sains dan Seni ITS Vol. 6, No.1.
Gerard, C. (2021). TensorFlow.js. Practical Machine Learning in JavaScript.
Komulainen, J., De Martino, J. M., & Komulainen, M. (2014). Face Liveness Detection Using Dynamic Texture. EURASIP Journal on Image and Video Processing, 2.
Li, L., Mu, X., Li, S., & Peng, H. (2020). A Review of Face Recognition Technology. IEEE Access.
Liu, S., Song, Y., Zhang, M., Zhao, J., Yang, S., & Hou, K. (2019). An identity authentication method combining liveness detection and face recognition. Sensors (Switzerland).
Mahayadnya, G. A. (2021). Rancang Bangun Website Berbasis Cloud Computing Untunk Mendeteksi Penyakit Tanaman Menggunakan Machine Learning. 16.
Nugroho, P. A., Fenriana, I., & Arjianto, R. (2020). Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Wajah. Jurnal Algor, 17.
Pang, B., Nijkamp, E., & Wu, Y. N. (2020). Deep Learning With TensorFlow: A Review. Journal of Educational and Behavioral Statistics.
Pratap, K., Priya, A., & Mani, G. (2019). Technologies to overcome spoofing attack in facial recognition. International Journal of Recent Technology and Engineering, 3.
Sahi, A. (2020). Aplikasi Test Potensi Akademik Seleksi Saringan Masuk LP31 Berbasis Web Online Menggunakan Framework Codeigniter. Jurnal Teknologi Informasi Dan Komunikasi.
Sthevanie, F., & Ramadhani, K. (2014). Spoofing detection on facial images recognition using LBP and GLCM combination. International Conference on Data and Information Science.
Sudiana, D., Diponegoro, A. D., & Priambodo, P. S. (2018). Sistem Pengenalan Wajah (Face Recognition) Menggunakan Metode Hidden Markov Model (HMM). 2.
Suprianto, D., Hasanah, R. N., & Santosa, P. B. (2013). Sistem Pengenalan Wajah Secara Real-Time dengan Adaboost, Eigenface PCA & MySQL. Jurnal EECCIS Vol. 7, No. 2.
Tian, H., & Wang, T. (2020). Computer vision technology in agricultural automation —A review. Information Processing in Agriculture, 2.
Wibowo, A. P. (2016). Implementasi Teknik Computer Vision Dengan Metode Colored Markers Trajectory Secara Real Time. Jurnal Teknik Informatika Vol. 8 No.1.
How to Cite
Basurah, M., Swastika, W., & Hendra Kelana, O. (2023). IMPLEMENTATION OF FACE RECOGNITION AND LIVENESS DETECTION SYSTEM USING TENSORFLOW.JS . Jurnal Informatika Polinema, 9(4), 509-516. https://doi.org/10.33795/jip.v9i4.1332