Implementasi Ekstraksi Fitur GLCM dengan Klasifikasi Algoritma C5.0 Pada Data Computerized Tomography Scan Covid-19

  • MUHAMMAD ROFIQ Universitas Lambung Mangkurat
  • Triando Hamonangan Saragih Universitas Lambung Mangkurat
  • Dodon Turianto Nugrahadi Universitas Lambung Mangkurat


Digital imaging technology has been widely used in the medical field in the diagnosis of biological image data to guide doctors to determine the patient's condition. One of the medical imaging techniques that can describe conditions in the human body is Computed Tomography (CT). This study used a chest CT scan image dataset totaling 625 CT data. The feature extraction used to get some statistical features about the image is GLCM (Gray Level Co-Occurrence Matrix). In GLCM Distance is represented as pixels whereas orientation is represented in degrees. Orientation is formed from four angular directions with intervals of 0°, 45°, 90°, and 135°. While the distance between pixels is usually set at 1 pixel. After feature extraction, classification will be carried out using the C5.0 algorithm method. Accuracy results from the C5.0 classification method using GLCM feature extraction get results of an accuracy of 87% at an angle of 90°, 84% at an angle of 45°, 83% at an angle of 135° , and 82% at an angle of 0°.


Download data is not yet available.


[1] Auliasari. (2021). Feature Extraction And K-Means Clustering Approach To Classify The Covid-19 Lung Ct-Scan Image. IJISCS (International Journal of Information System an Computer Science)
[2] Li, Q, Guan X, Wu P, Wang, X. & Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine.
[3] Sharmila & Jemi, Florinabel. (2021). Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images. Computational and Mathematical Methods in Medicine. Volume 2021, Article ID 9269173, 10 pages
[4] Utomo, Putro., Pahala, Sirait & Roni, Yunis. (2020). Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5.0. Jurnal Media Informatika Budidarma. Vol. 4, No. 4, Oktober 2020, Page 994-1006
[5] Yudistira, Novanto., Widodo, Agus Wahyu & Rahayudi, Bayu. (2020). Deteksi Covid-19 Pada Citra Sinar-X Dada Menggunakan Deep Learning Yang Efisien. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK). Vol. 7, No. 6, Desember 2020, hlm. 1289-1296.
[6] Wuryani, Nanik. & Agustiani, Sarifah. (2020). Random Forest Classifier untuk Deteksi Penderita COVID-19 berbasis Citra CT Scan. Jurnal Teknik Komputer AMIK BSI Volume 7, No.2, Juli 2021
How to Cite
ROFIQ, M., Saragih, T. H., & Nugrahadi, D. T. (2023). Implementasi Ekstraksi Fitur GLCM dengan Klasifikasi Algoritma C5.0 Pada Data Computerized Tomography Scan Covid-19. Jurnal Informatika Polinema, 9(4), 353-362.