Analisis Seleksi Fitur Binary PSO Pada Klasifikasi Kanker Berdasarkan Data Microarray Menggunakan DWKNN

  • Yanche Kurniawan Mangalik Program Studi Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Lambung Mangkurat
  • Triando Hamonangan Saragih Lambung Mangkurat University
  • Dodon Turianto Nugrahadi Lambung Mangkurat University
  • Muliadi Muliadi Lambung Mangkurat University
  • Muhammad Itqan Mazdadi Lambung Mangkurat University
Keywords: Microarray, Feature Selection, Classification, Binary Particle Swarm Optimization, Distance Weighted K-Nearest Neighbors

Abstract

One of the most causes of death globally is cancer. Cancer deaths can be reduced by early detection of cancer using microarray technology. However, this technology has a drawback, namely the number of genes (features) that are too many. This problem can be solved by performing  feature selection on microarray data. One of the feature selection algorithms that can be used is Binary Particle Swarm Optimization (BPSO). In this study, feature selection with BPSO will be carried out on microarray data and classification using Distance Weighted KNN (DWKNN). Then we will compare the results of accuracy, precision, recall, and f1-score between DWKNN and DWKNN with feature selection. Feature selection and classification in the Leukemia dataset produced the highest accuracy, precision, recall, and f1-score of 93.12%, 94.39%, 95.92%, and 94.8%, respectively. In the Lung Cancer dataset, the highest accuracy, precision, recall, and f1-score were 98.36%, 98.77%, 99.35%, and 99.03%, respectively. In the Prostate Cancer dataset, the highest accuracy, precision, recall, and f1-score were 86.81%, 89.13%, 88.04%, and 88.07%, respectively. In the Diffuse Large B-Cell Lymhpome dataset, the highest accuracy, precision, recall, and f1-score were 85.8%, 93.21%, 88.1%, and 89.76%, respectively. The comparison results show an increase in accuracy, precision, recall, and f1-score in the DWKNN algorithm with BPSO feature selection compared to the DWKNN algorithm without BPSO feature selection.

Downloads

Download data is not yet available.

References

Adiwijaya, A. (2018). Deteksi Kanker Berdasarkan Klasifikasi Microarray Data. Jurnal Media Informatika Budidarma, 2(4), 181. https://doi.org/10.30865/mib.v2i4.1043
Amrullah, M. N. M., Adiwijaya, & Astuti, W. (2020). Implementation of Modified Backpropagation with Conjugate Gradient as Microarray Data Classifier with Binary Particle Swarm Optimization as Feature Selection for Cancer Detection. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(3), 339–349. https://doi.org/10.32736/sisfokom.v9i3.978
Chrismanto, A. R., Lukito, Y., & Susilo, A. (2020). Implementasi Distance Weighted K-Nearest Neighbor Untuk Klasifikasi Spam & Non-Spam Pada Komentar Instagram. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(2), 236–244. https://doi.org/10.26418/jp.v6i2.39996
Gohzali, H., Megawan, S., & Onggo, J. (2019). Rekomendasi Buku Menggunakan K-Nearest Neighbor (KNN) dan Binary Particle Swarm Optimization (BPSO). Jurnal SIFO Mikroskil, 20(1), 1–5. https://www.ranks.nl/stopwords.
Gou, J., Du, L., Zhang, Y., & Xiong, T. (2012). A New Distance-weighted k-nearest Neighbor Classifier. Journal of Information & Computational Science, 9(6), 1429–1436.
Hardianti, W., Indriani, F., & Nugroho, R. A. (2017). Analisis Perbandingan Algoritma Distance-Weighted KNN dan Algoritma KNN pada Prediksi Masa Studi Mahasiswa. Seminar Nasional Ilmu Komputer (SOLITER), 1, 108–117.
Ma’wa, S., Adiwijaya, & Rohmawati, A. A. (2019). Klasifikasi K-Nearest Neighbor untuk Data Microarray dengan Seleksi Genetic Algorithm. E-Proceeding of Engineering, 6(2), 9838–9847.
Manikandan, G., Susi, E., & Abirami, S. (2017). Feature selection on high dimensional data using wrapper based subset selection. 2017 2nd International Conference on Recent Trends and Challenges in Computational Models, ICRTCCM 2017, 320–325. https://doi.org/10.1109/ICRTCCM.2017.58
Nishom, M. (2019). Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 20–24. https://doi.org/10.30591/jpit.v4i1.1253
Rani, R. R., & Ramyachitra, D. (2018). Microarray Cancer Gene Feature Selection using Spider Monkey Optimization Algorithm and Cancer Classification using SVM. Procedia Computer Science, 143(2018), 108–116. https://doi.org/10.1016/j.procs.2018.10.358
Tamrakar, P., & Ibrahim, S. P. S. (2021). Lazy Learning Associative Classification with WkNN and DWkNN Algorithm. ITM Web of Conferences, 37. https://doi.org/10.1051/itmconf/20213701023
How to Cite
Mangalik, Y. K., Saragih, T. H., Nugrahadi, D. T., Muliadi, M., & Mazdadi, M. I. (2023). Analisis Seleksi Fitur Binary PSO Pada Klasifikasi Kanker Berdasarkan Data Microarray Menggunakan DWKNN. Jurnal Informatika Polinema, 9(2), 133-142. https://doi.org/10.33795/jip.v9i2.1128